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Smoothness Priors and Nonlinear Regression

ROBERT J. SHILLER*

Smoothness priors represent prior information that an un-
known function does not change slope quickly and hence
that the function describes a simple curve (e.g., Wahba
1978). In this article such priors for the multiple nonlinear
regression model are developed in such a way that esti-
mates and ‘‘standard errors’’ can be obtained as a natural
and conceptually straightforward extension of linear mul-
tiple-regression estimation with the addition of dummy
variables and dummy observations. Relations to spline
and polynomial interpolation are described. An illustra-
tive example of cost-function estimation is provided.

KEY WORDS: Nonparametric regression;
smoothing; Polynomial regression.
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1. INTRODUCTION

Those who use the multiple-regression model in applied
work often find themselves seeking simple expedients to
allow for nonlinearity in an independent variable. This
article offers another such simple expedient based on re-
cent Bayesian literature on spline smoothing.

In most applications of the linear regression model,
there is apparently no theory that the relation should be
linear. Linearity is assumed for simplicity. Similarly
when, in such applications, concern is felt that a partic-
ular independent variable might have a distinctly nonlin-
ear effect, there is probably little real knowledge about
the nature of the nonlinear function that describes this ef-
fect. Thus some simple way of dealing with the nonlin-
earity is sought. In these situations the same sense of
parsimony that inclines so many researchers to use the
simple linear models often inclines those concerned with
nonlinearity to modify the linear model minimally as by
allowing only one (or a couple) of the independent vari-
ables to have a nonlinear effect.

Thus one often sees reported regression results in
which, for example, the squared value of an independent
variable is added as an extra independent variable. Such
an application of polynomial regression may be called a
parametric method because the nonlinear function is re-
stricted to a certain class of functions. In this case the
function must be parabolic. There is a question whether
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one’s intuitive modeling sense is generally well served by
such simple parametric methods—that is, whether one’s
actual intangible prior knowledge of the function is well
represented by the prior restrictions implicit in the model.
Did one really want to restrict the function to the U shape
of the parabola when this was done?

The regression methods proposed here may be thought
of as rubber-ruler methods. The straight hard ruler of
strictly linear multiple regression is softened somewhat
for an independent variable. The resulting estimators are
restrictive only in the sense that a rubber ruler is restric-

" tive. These estimators allow the estimated function to

describe, for example, a parabola or a function with an
asymptote as well. The multiple-regression estimation
methods described here cannot be reduced in any useful
way to univariate curve fitting with transformed data. In
experiments with a variety of known smooth functions,
the estimators produced nearly the true functions, even
when their shape could not be spotted visually in any
scatter diagram.

The model that will be considered here allows for non-
linearity in one independent variable:

}’z = f(xtl) + x12'y + €;, (1)

where y, is the ith observation of the dependent variable
(a scalar), f(-) is an unknown function, x,; is the ith ob-
servation of the first independent variable (a scalar), x,»
is the ith observation of the g element row vector of other
independent variables, v is a g element column vector of
unknown regression coefficients, and e; is the unknown
error term. (The natural generalization of (1) suggested
by the approach here is y; = >, f,(x;,) + e—i.e., an
additively separable model.) The vector €, whose ith ele-
ment is €;, is assumed independent of all observations of
the independent variables and spherically normal with
zero mean and variance o2. There are n observations of
the vector {x,1, x», y:] (i = 1, ..., n), ordered in terms
of increasing x;;. ’

The prior notion of smoothness used here is that the
slope of the unknown function f(-) probably does not
change too fast. Thus, loosely speaking, the priors will
give high probability to any function that can easily be
drawn with a rubber ruler—that is, for which one does
not have to bend the ruler too hard. The rubber-ruler
analogy is apt because the prior density used here has an
analogy to the potential energy in an elastic beam sub-
jected to loads at discrete points (see Sokolnikoff 1956).
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Here the likelihood function will supply the loads at ob-
servation points. The priors are partially uninformative.
They carry information about changes in slope but not
about slope or individual values of the function. The pri-
mary estimation method developed here depends on a
special case of a class of priors due to Wahba (1978) based
on earlier work by Kimeldorf and Wahba (1970). I call
this case continuous smoothness priors. They are con-
tinuous because the priors effectively concern derivatives
of the unknown continuous function. In Section 5 slightly
simpler priors (Whittaker and Robinson 1967, Shiller
1973, Gersovitz and MacKinnon 1978), which I call
discrete smoothness priors, will be discussed. They are
discrete because the priors concern differences (mea-
sured across discrete points) of the unknown function.

The methods developed here are explicitly Bayesian
and in this respect are quite different from other esti-
mation methods used for unknown functions, such as the
nearest-neighbor methods (Cover 1968 and Stone 1977),
the recursive partitioning method (Breiman and Meisel
1976), or the projection pursuit method (Friedman and
Stuetzle 1981). The methods discussed are closer to those
of Blight and Ott (1975) or Oman (1982). The estimation
method produced here is nonparametric in the sense that
the prior does not absolutely rule out any value for the
estimate of the vector f(x,;), i = 1, ..., n).

2. THE PRIOR AND POSTERIOR DISTRIBUTION
FOR f and v

The estimation approach here is designed 10 facilitate
estimation of the values and corresponding ‘standard er-
rors”’ of the function f(-) at an arbitrarily specified list
of values of the argument of the function, not just those
values for which there are observations. Thus the re-
searcher may choose to estimate the function at more or
less equally spaced values of the argument even if the
observations are unequally spaced, or the researcher may
choose to view the function more finely in an interval of
the argument in which there is particular interest. For
this, one must write the likelihood function for the model
(1) in an unusual form that involves redundant parame-
ters.

The f(-) in (1) will be estimated at N = 3 distinct points
X1 ( =1,..., N)ordered in terms of increasing %;;,
where all observed values of x,; are included among %;;,
but £,; # %, unless i = j. Write the n X (N + g) element
matrix X = [X, : X>]. The n X N element matrix X; has
elements X, equal to zero, except in x,; = %,;, where
the element is 1. One may think of the columns of X, as
dummy variables representing points along the function.
The n X g element matrix X, has x; as its ith row. With
the n element vector, Y—whose ith element is y,—and
the N + g element vector B’ = [f' : y']’, where the ith
element of the N element column vector f is f (¥,1), one
can write the likelihood function

L(Y | B, h, X) < h"?exp[—h(Y — XB)'(Y — XB)2], (2)

where 4 is the precision equal to 1/o. If there is only one
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observation at each point ¥,; ( = 1, ..., N), then the
likelihood function will be saturated so that maximum
likelihood estimation is not feasible.

The intuitive notion behind continuous smoothness
priors is that the derivatives of the unknown function do
not change too fast as the argument changes, and thus
the function is smooth and not choppy or irregular. This
suggests that the second derivatives of the function at all
points on the real line are probably small. One may wish
to make the prior on the second derivatives spherically
normal. This intuitive notion will be formalized later, by
forming a prior representing that the unknown function
is a realization of the integral of a Wiener process for
which the standard deviation of an increment is small.
Wahba’s (1978) priors were more general: she allowed
the im — 1)th integral m > 0 of a Wiener process rather
than merely the first integral. For m other than 2, her
priors do not have the same interpretation as a softening
of the linearity restriction in ordinary regression.

To derive continuous smoothness priors then, which
will be cylindrically uniform priors (as in Leamer 1978),
let Z(t) be a stochastic process such that Z(0) = 0, dZ(0)
= 0, where Z(1) is the integral of a unit Wiener process
and dZ(t) is the stochastic differential of Z(7). Then the
autocovariance function for Z is the integral of the au-
tocovariance function of a Wiener process:

als, ) = B(Z(s) - Z(t)) = L ’ L " min(s’, £')ds'dt".

Then
s2ti2 — 5316,
st?/2 — 316, 3)

Let Q, be the N X N matrix whose ijth element is g((%,;
+ 1), (£,1 + 1)). Clearly, as ¢ approaches infinity, all
elements of Q, approach infinity. As one moves away
from initial conditions at ¢ = 0, the variance of this non-
stationary process approaches infinity. However, Q,~!
approaches a finite nonzero limit. The prior distribution
for f will be multivariate normal with zero mean and pre-
cision matrix (the inverse of the prior variance matrix)
equal to £ 7% lim—. O, !, where £ is the standard devia-
tion of the change in slope (derivative) of the function
over a one-unit interval in x;. Because the prior uses
lim,—... Q,” ! rather than Q,™! for finite ¢, the prior is par-
tially uninformative as noted in the introduction.

Define the (N — 2) X N matrix R such that Rf is a
vector whose elements correspond to the slope changes
in the function, so our notion of smoothness of the func-
tion can be described as implying that the elements of Rf
are probably small.

CI(S, t) s=t

s =1.

R, =AY, i=j
= —(A7 + AaTY, i=j—-1
= AN i=j—-2
=0, otherwise, (C))]
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where A, = ()Z,H,;/ — %4). Thus
le = ftAt_l - fi+1(Al_1 + Ai+l_l) + .fl+2Al+1_l
= (.ft - fl+1)/Al - (fl+1 - .fl+2)/Al+1

is the difference in the slope between a line connecting
(%i1, f1), Kisv1,1, fi+1) and aline connecting (£, + 1.1, f1+1),
(%,+2.1, f.+2). Thus if the chosen values of %, are spaced
at unit intervals, then Rf is the vector of second differ-
ences of the function values at these points. Define the
N X 2matrix AbvyAy = landAp =%, =1,...,
N). The RA = 0. The variance matrix B, of [Z(¢), dZ(¢)]
is given by Bt11 = t3/3, Bt12 = Btzl = 12/2, and B122 =
t. Hence Q, = AB,A’ + Qo. Thus H, defined as RQ,R'
equals R(AB,A’ + Qo)R’, which equals RQo,R’, and
hence H does not depend on ¢. Multiplying, one finds that

H, =+ Ai)3,  i=j
= Ars /6, i=j—1
= A6, i=j+1
=0, otherwise, G)

where the tridiagonal (N — 2) X (N — 2) matrix H is of
full rank.

Proposition 1. The limit as t — © of Q,”'is R'"H " 'R.

Proof. Define the nonsingular matrix ® as [R’ : A].
Since RQ,R' = H and RQ:A = RQ.A, only the lower
right 2 X 2 block of ®'Q,® depends on ¢. Using the rule
for the inverse of a partitioned matrix and taking limits
as t — o, one finds that lim,..(®’'Q,®) ! is block di-
agonal with the upper block equal to H ! and the lower
block equal to zero. Premultiplying by ® and postmul-
tiplying by ®’ yields the proposition.

The prior distribution based on continuous smoothness
priors of the parameters of the model, the N + g element
vector B = [f’ : ']’ and the precision (%) of the regres-
sion error term, will be a partially uninformative conju-
gate prior of the kind discussed in Raiffa and Schlaifer
(1961). This prior conveniently produces a multivariate
Student posterior. Such a prior provides an estimator that
can be implemented by running a regression with dummy
observations representing the priors, and it allows Bayes-
ian interpretations of the estimated coefficients and stan-
dard errors. The case of this prior used here for 4 (in-
dependent of B) is p(h) « 1/h. This is the uninformative
prior for a scale parameter proposed by Jeffreys (1961).
The prior of vy (independent of f and /) will be flat: p(y)
« constant. Forming the product of these independent
priors, one finds the prior density

P(B., h) « hAN-D2exp(—k2hB'R'H™'RB2), (6)
where R is the (N — 2) X (N + g) matrix [R : 0] and k
= o/&.

The posterior distribution for B and # is by Bayes law,

proportional to the product of the prior (6) and the like-
lihood (2). To write the posterior, we first define the mat-

oM
ricesX(n + N-2xn+g,Ym+N-2x1),¢
m+N-2x1D,andQ(n+ N-2XxXn+N-2):
X | Y € I,:0
- Y= l,é=[-1,Q=
kR 0 kn 0 ‘H
sothat ¥ = XB + & and = Rf. This setup is similar

to that in Shiller (1973). The marginal posterior for B is
then the multivariate Student distribution

pB)x[n—g -2+ hp - B)EXQ'X)
X (B — R "+N-D2 (g)

X= @

where B = (', 4")" is the posterior mean of B,N given by

B=X'Q X" 'Xx'Q- 'y
=(X'X+KRH'RB'X'Y. 9

If g = 0 and X = I, expression (9) is implicit in expres-

sions 4.2-4.4 in Wahba (1978), where m in her expres-
sions is set to 2. The posterior mean of 4 is given by

h='=6*= (Y- XB)yQ (Y- Xp)n-g-2) (10)

(see Raiffa and Schlaifer 1961 for theorems that establish
this).

It is clear that § may be produced by running a con-
ventional generalized least-squares regression of ¥ on X
using variance matrix Q. The final N — 2 rows of X and
Y may be viewed as representing dummy observations
that the changes in slope of the function (the elements of
Rf) equal zero plus a noise term m. The larger k is the
more weight will be given to these dummy observations
and hence the more the regression estimator will smooth
the estimated function. (There is a substantial literature
regarding choice of nuisance parameters like k here. One
might look at Craven and Wahba 1979 or Ullah and Raj
1979.) The estimate of the variance~covariance matrix of
estimated coefficients that would be printed out by a stan-
dard generalized least squares regression program is
62(X'X + k*R'H™'R)~'. The marginal distribution of
the ith coefficient B, is Student with n — g — 2 degrees
of freedom (as would be computed by the program) and
scale parameter given by the standard error of the coef-
ficient printed by the program. Thus the standard ¢ sta-
tistics have a Bayesian interpretation.

3. ESTIMATING POINTS OF THE FUNCTION
WHERE THERE ARE NO OBSERVATIONS

Proposition 2. Adding to or deleting from the list %,
G =1,...,N)some elements that do not correspond
to observations has no effect on estimates or standard
errors of parameters. That is, suppose that one increases
or decreases the number of extra points at which the func-
tion is to be estimated. If the same procedure with the
same value of kis used, one will get the same estimates and
standard errors of the function (at points corresponding
to the values of £ that are included in both estimates) and
of the coefficient vector vy.
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Proof. 1t will suffice to show this for the case in which
one such element of f is deleted. The partially improper
prior p(B) on B was p(B) = lim,.. p, (B). If one uses the
same procedure to construct a prior onthe (N + g — 1)
element vector B® of elements of B other than f,, then

“the prior

p(i)(B(n) — }erlopt(’)(ﬁm) =}1_)Igfpt([3)dﬁ

Interchanging the limit and the integral shows that p®
(B?) = [ p (B)dSf,, that is, p® (B?) is the marginal prior
distribution of B from p (B). By construction, if ,, does
not correspond to an observation, then the ith column of
X is zero and hence f, drops out of the likelihood func-
tion. The marginal posterior distribution [ p (B)df, can
therefore be found as the product of the same likelihood
function (2) with [ p (B)df; = p® (B®). The marginal
posterior [ p (B)df;is thus the same as the posterior that
the same procedure would give for B, and thus the es-
timates and standard errors as defined here are the same.

4. RELATIONS TO SPLINE INTERPOLATION

A cubic spline v(x) is the third integral of a step function
in which the values of x, ,; (i = 1, ..., N) at which
the steps occur are called knots. It is a natural spline if
the function is linear in x for x < %, and for x > Xn;.
There is a unique cubic natural spline that interpolates
any set of N = 2 points (£;;, ¥),i = 1,. . ., N, for which
Xin # %,1 unless i = j (Greville 1969).

It is convenient to write the general cubic natural spline
with knots %, (i = 1, N) in terms of N parameters C, (i
1, ..., N)in a form used by Kimeldorf and Wahba
(1970):

N
v(x) = 0o + 0,x + >, glx, %,1)C..

=1

N
where >, C; =0 and

N

> Cxa=0. (11
=1 =1
One may write the vector f of estimated function values
in terms of the parameters of the cubic natural spline that
interpolates them, f = A0 + QoC, 6 = [0o, 6:1', and C
=[C;,C>,. . .,Cn].Then one has Proposition 3, which
is a restatement in this context and a generalization of a
result from Wahba (1978). .

Proposition 3. With continuous smoothness priors, if
the ith column of X, is spanned by X, then C; = 0.
Proof. The two restrictions on C can be written C =
R'C, where Cis an N — 2 element vector of parameters.
Now note that (using RA = 0),
R'H 'Rf = R'(RQ4R")"'Rf
= R'(RQoR')"'R (A8 + QoR'C)
= R'(RQoR')"'RQR'C =R'C = C.
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From the definition of {3,
X'X + *R'H"'R)B = X'Y,
and hence
X'XB + k*C = X'Y, (12)

where C' = [C’, 0]. Since the ith row of X, is spanned
by X, one can write Xr = 0 where the first N elements
of the vector rare zero except for the ith. Premultiplying
Equation (12) by ¢’ then gives C, = 0.

Proposition 2 showed that estimates depend only on
those x; sites in which there are observations. The most
important consequence of Proposition 3 is that estimates
for the other points fall on the cubic natural spline that
interpolates the estimates for the actual observations.
Specifically, if one includes in the x a value of the function
at a point %,; where there is no observation, then the
estimate at this point f(i,-l) is a cubic natural spline in-
terpolation of the other estimated points T, F&Ew),
oy FGE—1), FGEiart)s - - ., JGEan). In this case the
ith column of X is zero and thus spanned by X, even
if X, has zero columns (g = 0).

Proposition 3 also implies that the estimate F(&,) is the
cubic natural spline interpolation of the other function
values if one dummies all observations corresponding to
X,1 (i.e.,if one includes among the columns of X, a dummy
variable that is 1 in all rows where x, attains this value
and zero otherwise) or if one includes in X, a column
whose elements are collinear with x;, except in a region
where x; = %, (and there has a different value).

Although the estimated function is a cubic spline, the
procedure giving rise to B, as noted, should not be con-
fused with the fitting of regression splines as it is com-
monly practiced (for a discussion see Wegman and Wright
1983). Fitting regression splines achieves restrictions on
the function at the points x; (i = 1, . . ., n) by assuming
the function lies on a spline in x, with fewer than n knots,
and it makes no prior assumption about the probability
of large changes in slope.

5. DISCRETE SMOOTHNESS PRIORS

- What is the role of the H ' matrix in the expression
(Equation (9)) for B? One could have begun with what
might be called discrete smoothness priors by substituting
the identity matrix for H in the prior (6). If the values of
X,1 are chosen to be equally spaced (i.e., £;; — &;—1, 18
independent of i), then this prior would make f, the ith
partial sum of a random walk in i (rather than the integral
to i of a Wiener process in i) and the estimate of § would
be the ordinary least squares estimate of ¥ on X:

B=XX'XY=XX+kRR XY
In the case in which element§ X, are equally spaced,
R'R has the property that R'Rf (except for the first two
elements and last two elements) is a constant times the
vector of fourth differences of f. Thus the same circum-

stances that with continuous smoothness priors caused
J(%:1) to lie on a cubic spline interpolating the other es-
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timated function values would, with discrete smoothness
priors, cause f(%,) to lie on a cubic polynomial that in-
terpolates the adjacent two estimated values on either
side—that is, interpolates FGiz2.1), FGio0), FEs1),
f(x,+2 1). In contrast, the spline 1nterp01at0r places
f .. ,1) onacubic polynomial that passes through f(x, 1,1)
and f (%:+1,1) but does not generally pass through Fx,- 2.1)
or f(x,+2 1), and the polynomial is determined with the
additional restriction of continuity of first and second de-
rivatives. The estimate f(x,)) with discrete smoothness
priors is determined locally by adjacent estimated points,
but the estimate f(%;;) with continuous smoothness priors
is determined globally by all other estimated points.

Proposition 2 does not hold for discrete smoothness
priors (unless the element dropped is x,; or xx1). Discrete
smoothness priors are thus most appropriately applied
where x,; (i = 1, , N) is the complete list of points
at which the function might be estimated, as when x,;
take on integer values only.

6. RELATIONS TO LINEAR ORDINARY LEAST SQUARES

Whether one uses continuous or discrete smoothness
priors—that is, whether Qin B = (X'QX)"'X'Q 'Y is
as shown in (7) or is the identity matrix—strict multi-
collinearity is a problem if and only if it is a problem with
ordinary linear regression. Moreover, the estimates ap-
proach the ordinary linear regression estimates as k ap-
proaches infinity. It can be shown that if (X'X) is non-
singular,

lim B = A(A'X'XA)"'A'X'Y

k=0
and

lim c2(X'Q7'X) ! = SPAA' X' XA) A,
where A is the (N + g) x (g + 2) block diagonal matrix
with A in the upper block and I, in the lower block and
where s is the estimated standard error of regression of
Yon XA. If X'X or X'Q~'X is nonsingular for any k,
then X’ X and X’'Q~'X are nonsingular for all nonzero k.
Moreover, X'X is nonsingular if and only if A'X’ XA is
nonsingular. The n X (g + 2) matrix XA has 1’s in its
first column, the x; observations in its second column,
and the observations of the remaining variables in suc-
ceeding columns. Thus lim;—... 3 = A3, where the g +
2 element vector d is the vector of linear ordinary least
squares regression coefficients of y on a constant, x; and
X2.

Smoothness priors are uninformative on the same
space where the Bayesian priors that produce linear or-
dinary least squares are uninformative but are uninfor-
mative on a space of dimension smaller than that of the
Bayesian priors that produce classical polynomial regres-
sion (i.e., a regression of y on x;, x, and higher powers
of x;) as an estimator. Thus polynomial regression may
fail because of multicollinearity even when linear ordi-
nary least squares regression (and hence the estimate with
smoothness priors) does not.
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Either too small or too large a value of £ may result in
an X'X matrix, which, although technically nonsingular,
may be close enough to singularity that a computer pro-
gram will not invert it. All ill-conditioned X’ X matrix may
also occur if two observations of x, are very close to-
gether but not equal. One may wish to deal with this prob-
lem by rounding the data so that the two observations
become identical.

7. ATTEMPTS TO REDUCE THE ESTIMATION PROBLEM

Does the estimator of the unknown function in this mul-
tiple regression context reduce in some sense to simple
univariate curve fitting on transformed data? One might
expect that one could at least get a good idea of the nature
of the curve in a scatter plot. Call ¢; the residuals of a
vector j in a regression on X, (so that ¢, = (I —
X>2(X2'X2)"'X>")j). One might then consider plotting e,
VETSUS X3, e, VEIsus ey,, or just y against x;. No such
scatter plot, however, can properly take into account the

.covariances of all of the dummy variables representing

points along the function with X,. In experiments with a
known function f(x;) one finds that such scatter plots
may give no indication of the true curve even when the -
estimator (9) produces very nearly the true curve. Thus
the multiple regression context is a good showplace for
smoothness priors.

Even when the vector x; = [x11, x21, . . . , Xm1]' I8
orthogonal with all columns of X, the estimate of the
function f is not the same as the estimate one would ob-
tain by using the smoothness priors estimator (9) with e,
in place of y. Rather, the estimate is the same when the
vector [ f(x11), F(x21), . . ., F(xa1)] is orthogonal with all
columns of X, as can be seen directly from the normal
equations implied by (9). This is not helpful, since one
must know f to reduce the problem to univariate curve
fitting in this way.

8. ILLUSTRATIVE EXAMPLE

In an oft-cited study, Nerlove (1963) sought evidence
in the electric utility industry for the U-shaped cost curve
for individual firms hypothesized by microeconomic
theorists. Both very small firms and very large firms were
thought to be inefficient and hence to face higher costs
of producing output. Such cost curves have been the cor-
nerstone of the classical theory of the size distribution of
firms: Competition should tend to drive the size of firms
to that corresponding to the minimum cost level of output.

The data used here are from Nerlove’s (1963) Appendix
C. Each of the 25 observations used here represents a
firm and applies to the year 1955. The dependent variable
y is the log of cost in millions of dollars per billion kilo-
watt-hours of output. The variable x, is the log of output
measures in billions of kilowatt-hours. The vector x, con-
sists of two variables: the log of the wage rate and the
log of the fuel cost.

In estimating the model (1), Nerlove used a piecewise
linear function for f(-) and concluded that there was no
evidence for the U-shaped cost curve hypothesized by
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theorists. He concluded that costs per unit of output were
declining with output for small firms but essentially con-
stant for large firms.

When the continuous smoothness priors with £ = 1
were applied to these data, the estimated function was as
shown in Figure 1. The estimated curve indeed shows
declining costs at first, followed by essentially constant
costs.

Consideration of this example may help to elicit one’s
priors. In such a study it would not seem appropriate to
use second-order polynomial regression for x;. To do that
would be to restrict the function either to the U shape of
a parabola or to a linear shape. Higher order polynomials
are also incapable of representing an asymptote, but they
would allow shapes much closer to that seen in Figure 1,
as well as U shapes. A fifth-order polynomial-regression
estimate (which retained linearity in X»), Figure 2, looked
more or less like the estimate in Figure 1. Although one
should not make too much of the difference between Fig-
ures 1 and 2 (the standard errors of the coefficient esti-
mates in both figures around ¥ = 9 are a little more than
one), it is interesting to note that Figure 2 does suggest
a minimum cost level of output—that is, the function sud-
denly curves up at the end. What might account for this
difference between 1 and 2?

The first question to ask is how well a fifth-degree po-
lynomial can approximate the curve in Figure 1. To an-
swer this, f from Figure 1 was fitted to x; with a fifth-
order polynomial. The fitted curve came much closer to
the f in Figure 1 than the curve shown in Figure 2 did,
but it also showed an upturn at the end, establishing that
the inability of polynomials to represent asymptotes is a
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Figure 1. Estimated Function Based on Continuous Smoothness

Priors (f(xa1) v %1, i = 1,. ., N) Using Estimator (9) With k = 1
Data' are described in Section 8 C ’
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Figure 2. Estimated Function Using the Same Data That Produced
the Estimates Shown in Figure 1 but Using Fifth-Degree Polynomial
Regression Instead of the Estimator (9).

problem here. The upturn, however, was only one-fourth
as big as in Figure 2. Furthermore, note that the curve
in Figure 2 lies everywhere above that of Figure 1, so
one should not regard the curve in Figure 2 as a poly-
nomial approximation to the curve in Figure 1.

Polynomial regression has no objection, s0 to speak,
to sudden changes in slope. Thus, for example, if x,° is
nearly collinear with variables in x», then its coefficient
and hence the behavior of the estimated function at the
end may be highly erratic. For Nerlove’s purposes, rub-
ber-ruler priors may be more appropriate than a prior in
which the function is a polynomial.

9. DISCUSSION

The versatility of the estimators is apparent in exper-
iments in which the likelihood is quite informative—that
is, where o is small. For example, the estimators do
nearly as well as a polynomial regression in which the
true curve is a polynomial, and they do much better if
the true curve is bell-shaped. This, of course, is just a
reflection of the aptness of the prior.

One observation that comes from experimenting with
the estimators is that it often seems to make relatively
little difference for the general appearance to the esti-
mated function whether one uses discrete or continuous
smoothness priors or even, over a substantial range,
which k one uses. There is a sense in which the main
effect of the smoothness priors is to entrain the various
points along the estimated function, regardless of the
exact variance matrix £ chosen for the prior. If there are,
say, 25 points spaced at unit intervals estimated along the
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function, then the prior standard deviation of the change
in slope of the function over its whole range is five times
the standard deviation £ of the change in slope between
successive points. Thus over a wide range of chosen val-
ues for &, the prior is essentially uninformative about the
overall shape of the function while being fairly inform-
ative that the curve should be smooth.

One might contrast the estimator with the generaliza-
tion of polynomial regression of Blight and Ott (1975).
They weakened the strict polynomial parameterization by
representing the function f(x,) as a polynomial of known
degree plus an error term e(x;), which was a first-order
autoregressive process in x;. Their prior allows rapid
changes in slope if the standard of e is large, and rules
out asymptotes if the standard deviation of e is small.

In the preceding illustrative example, observations
were chosen to be more or less equally spaced in terms
of x;. It often happens that observations of x; are, in-
stead, relatively clustered in certain regions. In that case,
the estimators based on smoothness priors will tend to
give a more detailed estimated curve in those regions.
This ought to be considered an advantage of the esti-
mators. For example, McCulloch (1975), who wished to
estimate the yield curve (yield as a function of time to
maturity) on U,S. Treasury securities, found that most
observations were at the low end of the maturity scale.
He observed that when polynomial regression was used
to fit the curve, the detail apparent in the scatter diagram
at low maturities was lost in the estimated polynomial.
Therefore he used spline regression and chose more knot
positions at the low end of the maturity scale. Smoothness
priors automatically place knots at each observation
point.

[Received March 1983. Revised February 1984.]
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