Econ 525a (first half)
Fall 2012
Yale University
Prof. Tony Smith

PROBLEM SET \#3

Answers to this problem set are due by the beginning of lecture on Wednesday, October 3. You should submit copies of your code along with a brief description, perhaps in the form of graphs or tables, of your findings. Please submit this documentation by email to: tony.smith@yale.edu.

1. Write a program (in a language of your choosing) that uses golden-section search to find the maximum of the function $f(x)=\log (x)-x$.
2. Write a program that uses the Newton-Raphson method to find the maximum of the function in the first problem. Which method converges more quickly?
3. Consider an exchange economy with two periods and two (price-taking) consumers. Consumer i is endowed with ω^{i} consumption goods in period 1 . Consumption goods are not storable. There are two possible states of the world, state 1 and state 2 , in period 2, with associated probabilities π_{1} and $\pi_{2}=1-\pi_{1}$. Consumer i is endowed with ϵ_{j}^{i} consumption goods in state j in period 2 . Each consumer maximizes

$$
U\left(c_{1}^{i}\right)+\beta E\left[U\left(c_{2}^{i}\right)\right],
$$

where c_{1}^{i} is consumer i 's period- 1 consumption and c_{2}^{i} is consumer i 's period- 2 consumption (which may depend on the state of the world in period 2). Let $U(c)=$ $(1-\gamma)^{-1}\left(c^{1-\gamma}-1\right)$, where $\gamma>0$. Finally, assume that the two consumers face symmetric risks in period 2: in particular, set $\pi_{1}=\pi_{2}=1 / 2$ and set ϵ_{j}^{i} equal to $2+z$ if $i=j$ and equal to $2-z$ if $i \neq j$, where $0 \leq z<2$. (Note: In cases where you cannot find an analytical answer to the questions posed below you may instead present numerical results.)
(a) Suppose that markets are complete: in period 1, the two consumers trade two Arrow securities, one for each state of the world in period 2. Let a_{j}^{i} be the quantity of Arrow securities purchased by consumer i in period 1 that pay off in state j in period 2. (Note: A state- j Arrow security pays one unit of the consumption good in state j in period 2 but nothing in the other state.) Let q_{j} be the price of a state- j Arrow security. The consumer's budget constraints in this case are: $c_{1}^{i}=\omega^{i}-q_{1} a_{1}^{i}-q_{2} a_{2}^{i}$ and $c_{2 j}^{i}=a_{j}+\epsilon_{j}^{i}, j=1,2$. In equilibrium,
q_{1} and q_{2} adjust so that the markets for both Arrow securities clear: $a_{j}^{1}+a_{j}^{2}=0$ for $j=1,2$. Compute equilibrium prices and (consumption) allocations for the following parameter configurations:
(i) $\gamma=1$ (log utility) and $\omega^{1}=\omega^{2}=2$
(ii) $\gamma=3$ and $\omega^{1}=\omega^{2}=2$
(iii) $\gamma=1, \omega^{1}=3$, and $\omega^{2}=1$
(iv) $\gamma=3, \omega^{1}=3$, and $\omega^{2}=1$
(b) Now suppose that markets are incomplete: in particular, suppose that consumers are allowed to trade only one asset in period 1, namely, a risk-free bond that pays 1 unit of the consumption good in both states of the world in period 2. In this case, the consumer's budget constraints are: $c_{1}^{i}=\omega^{i}-q b^{i}$ and $c_{2 j}^{i}=b^{i}+\epsilon_{j}^{i}$, where q is the price of the bond and b^{i} is the number of bonds purchased by consumer i in period 1. In addition, impose a borrowing constraint that guarantees that consumption in period 2 is nonnegative in both states of the world: $b^{i} \geq z-2$. The price q adjusts so that the bond market clears: $b^{1}+b^{2}=0$. Compute equilibrium prices and allocations for the four parameter configurations in part (a), assuming that $z=1 / 2$. Compare your findings to those in part (a). How does the introduction of incomplete markets affect the equilibrium gross interest rate (i.e., the inverse of the price of a risk-free bond)?
(c) In the economy with incomplete markets, how does a decrease in z from $1 / 2$ to 0 affect the equilibrium interest rate? How does an increase in z from $1 / 2$ to 1 affect the equilibrium interest rate?

