Econ 525a (first half)
Fall 2012
Yale University
Prof. Tony Smith

PROBLEM SET \#5

Answers to this problem set are due by the beginning of lecture on Monday, November 5. Please submit your answers, including computer code, by email to: tony.smith@yale.edu.

1. Write a program (in a language of your choosing) that uses Gauss-Hermite quadrature to compute $E\left[e^{X}\right]$, where $X \sim N\left(\mu, \sigma^{2}\right)$. Set $\mu=1$ and $\sigma=1,2,3$. How does your answer change as you vary the number of quadrature points from 2 to 10? (Note: You can check your numerical answer against the analytical formula $E\left[e^{X}\right]=e^{\mu+\sigma^{2} / 2}$. To obtain the Gauss-Hermite weights and abscissas, you can use the program gauher in Chapter 4.5 of Numerical Recipes.)
2. The goal of this problem is to find a smooth approximation to the function v satisfying:

$$
v(k)=\max _{k^{\prime}}\left[U\left(f(k)-k^{\prime}\right)+\beta v\left(k^{\prime}\right)\right],
$$

where the functions U and f are specified as in the first problem on Problem Set \#1. Approximate v on an interval $\left[k_{L}, k_{H}\right]$ centered on the steady-state capital stock using a linear combination of Chebyshev polynomials. Specifically, set up a grid of n points on the interval $\left[k_{L}, k_{H}\right]$ according to the roots of the degree- n Chebyshev polynomial; guess on v at these grid points; maximize the right-hand side of Bellman's equation at each of the grid points, using Chebyshev interpolation to compute v off the grid; update v on the grid points; and continue iterating until the approximation to v converges.

