Econ 561a
Spring 2010
Yale University
Prof. Tony Smith

HOMEWORK \#1

1. Write a program (in a language of your choosing) to solve the neoclassical growth model using value iteration on a discrete grid (this is the method that we discussed in lecture on September 10). Let the production function take the form $f(k)=A k^{\alpha}+(1-\delta) k$, where $A>0,0<\alpha<1$, and $0 \leq \delta \leq 1$. Let the utility (or felicity) function be $U(c)=\log (c)$. Center your grid at the steady-state capital stock \bar{k}, as defined by $f^{\prime}(\bar{k})=\beta^{-1}$. Start with a small number (say, 11) of equally-spaced grid points, and then increase this number to, say, 101. Obtain numerical results both for the case of full depreciation $(\delta=1)$ and for the case of less-than-full depreciation $(\delta<1)$. For $\delta=1$, compare your numerical findings to the analytical (closed-form) solutions for the value function and the decision rule.
2. Use one-sided finite differences to compute an approximation to the first derivative of $g(p) \equiv 0.5 p^{-0.5}+0.5 p^{-0.2}$ at $p=1.5$. Let the increment ϵ in the finite differences range across all the values in the set $\left\{10^{-1}, 10^{-2}, \ldots, 10^{-10}\right\}$. For which value of ϵ is the approximate first derivative the most accurate?
3. Repeat the third problem using two-sided finite differences to approximate the first derivative.
4. Use the bisection, secant, and Newton's methods to compute an estimate of p^{*}, where $g\left(p^{*}\right)=0.75$ (and g is defined in the second problem). For each method, report how many iterations are required to compute an estimate \hat{p} satisfying $\left|g(\hat{p})-g\left(p^{*}\right)\right|<10^{-6}$.
5. Repeat the fourth problem using Brent's method as described in Chapter 9.3 of Nu merical Recipes.
